1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
// Copyright © 2023-2024 Random (VRD) library. All rights reserved.
// SPDX-License-Identifier: Apache-2.0 OR MIT
// This file is part of the `Random (VRD)` library, a Rust implementation of the Mersenne Twister RNG.
// See LICENSE-APACHE.md and LICENSE-MIT.md in the repository root for full license information.

use crate::MersenneTwisterConfig;
use rand::thread_rng;
use rand::Rng;
use serde::{Deserialize, Serialize};
use serde_big_array::BigArray;

#[non_exhaustive]
#[derive(
    Clone,
    Debug,
    Eq,
    Hash,
    Ord,
    PartialEq,
    PartialOrd,
    Serialize,
    Deserialize,
)]
/// The `Random` struct is used to generate random numbers using the Mersenne Twister algorithm.
///
/// This struct maintains an internal state for random number generation and provides methods to generate various types of random numbers.
///
/// # Initialization
/// The random number generator can be initialized with the `new` method, which seeds the generator with a default value.
/// ```
/// use vrd::random::Random;
/// let mut rng = Random::new();
/// ```

/// # Random Number Generation
pub struct Random {
    /// The array of unsigned 32-bit integers used to generate random numbers.
    #[serde(with = "BigArray")]
    pub mt: [u32; 624],
    /// The current index of the array used in the generation of random
    /// numbers
    pub mti: usize,
}

impl Random {
    /// Returns a random bool with a specified probability.
    ///
    /// The `bool` method returns a random boolean value. The probability of returning `true` is determined
    /// by the `probability` parameter. This method is useful for generating random boolean outcomes, like
    /// simulating a coin flip.
    ///
    /// # Arguments
    /// * `probability` - A f64 value representing the probability of the function returning `true`.
    ///                    This should be a value between 0.0 and 1.0, where 0.0 always returns `false` and 1.0 always returns `true`.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_bool = rng.bool(0.5); // 50% chance to get true
    /// ```
    ///
    /// # Panics
    /// Panics if `probability` is not between 0.0 and 1.0.
    pub fn bool(&mut self, probability: f64) -> bool {
        thread_rng().gen_bool(probability)
    }

    /// Generates a vector of random bytes of the specified length.
    ///
    /// # Arguments
    /// * `len` - The length of the byte vector to be generated.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_bytes = rng.bytes(10); // Generates 10 random bytes
    /// println!("Random bytes: {:?}", random_bytes);
    /// ```
    ///
    /// # Returns
    /// A `Vec<u8>` containing `len` randomly generated bytes.
    pub fn bytes(&mut self, len: usize) -> Vec<u8> {
        let mut res = Vec::with_capacity(len);
        for _ in 0..len {
            let byte = self.rand() as u8;
            res.push(byte);
        }
        res
    }

    /// Generates a random character within the range 'a' to 'z'.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_char = rng.char(); // Generates a random lowercase character
    /// println!("Random char: {}", random_char);
    /// ```
    ///
    /// # Returns
    /// A `char` representing a randomly chosen lowercase letter from 'a' to 'z'.
    pub fn char(&mut self) -> char {
        thread_rng().gen_range('a'..='z')
    }

    /// Selects a random element from a provided slice.
    ///
    /// # Arguments
    /// * `values` - A slice of values from which to select a random element.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let items = [1, 2, 3, 4, 5];
    /// let random_item = rng.choose(&items);
    /// println!("Random item from the array: {:?}", random_item);
    /// ```
    ///
    /// # Returns
    /// An `Option<&T>` which is `Some(&T)` if the slice is not empty, containing a randomly chosen element from the slice.
    /// Returns `None` if the slice is empty.
    ///
    /// # Panics
    /// Does not panic under normal operation.
    pub fn choose<'a, T>(&'a mut self, values: &'a [T]) -> Option<&T> {
        if values.is_empty() {
            return None;
        }
        let mut rng = rand::thread_rng();
        let index = rng.gen_range(0..values.len());
        Some(&values[index])
    }

    /// Generates a random floating-point number in the range [0.0, 1.0).
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_float = rng.float(); // Generates a random float
    /// println!("Random float: {}", random_float);
    /// ```
    ///
    /// # Returns
    /// A `f32` representing a randomly generated floating-point number.
    ///
    /// # Notes
    /// The generated float is inclusive of 0.0 and exclusive of 1.0.
    pub fn float(&mut self) -> f32 {
        thread_rng().gen::<f64>() as f32
    }

    /// Generates a random integer within a specified range.
    ///
    /// # Arguments
    /// * `min` - The lower bound of the range (inclusive).
    /// * `max` - The upper bound of the range (inclusive).
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_int = rng.int(1, 10); // Generates a random integer between 1 and 10
    /// println!("Random integer between 1 and 10: {}", random_int);
    /// ```
    ///
    /// # Returns
    /// An `i32` representing a randomly generated integer within the specified range.
    ///
    /// # Panics
    /// Panics if `min` is greater than `max`.
    pub fn int(&mut self, min: i32, max: i32) -> i32 {
        thread_rng().gen_range(min..=max)
    }

    /// Generates a random unsigned integer within a specified range.
    ///
    /// # Arguments
    /// * `min` - The lower bound of the range (inclusive).
    /// * `max` - The upper bound of the range (inclusive).
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_uint = rng.uint(1, 100); // Generates a random unsigned integer between 1 and 100
    /// println!("Random unsigned integer between 1 and 100: {}", random_uint);
    /// ```
    ///
    /// # Returns
    /// A `u32` representing a randomly generated unsigned integer within the specified range.
    ///
    /// # Panics
    /// Panics if `min` is greater than `max`.
    pub fn uint(&mut self, min: u32, max: u32) -> u32 {
        thread_rng().gen_range(min..=max)
    }

    /// Generates a random double-precision floating-point number.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_double = rng.double(); // Generates a random double
    /// println!("Random double: {}", random_double);
    /// ```
    ///
    /// # Returns
    /// A `f64` representing a randomly generated double-precision floating-point number.
    ///
    /// # Notes
    /// The generated double is a number in the range [0.0, 1.0).
    pub fn double(&mut self) -> f64 {
        thread_rng().gen::<f64>()
    }

    /// Returns the current index of the internal state array used in random number generation.
    ///
    /// This method is useful for inspecting the state of the random number generator.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let rng = Random::new();
    /// let current_index = rng.mti();
    /// println!("Current index of the RNG state array: {}", current_index);
    /// ```
    ///
    /// # Returns
    /// The current index (`usize`) of the internal state array (`mt`) used by the Mersenne Twister algorithm.
    pub fn mti(&self) -> usize {
        self.mti
    }

    /// Sets the value of the current index of the internal state array used in random number generation.
    ///
    /// # Arguments
    /// * `value` - The new index value to set for the internal state array.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// rng.set_mti(100); // Sets the current index to 100
    /// assert_eq!(rng.mti(), 100);
    /// ```
    ///
    /// # Notes
    /// - This method allows for manual manipulation of the internal state of the random number generator.
    /// - It should be used with caution, as incorrect values can affect the quality of the generated random numbers.
    pub fn set_mti(&mut self, value: usize) {
        self.mti = value;
    }

    /// Creates a new instance of the `Random` struct, initializing the internal state for random number generation.
    ///
    /// This method seeds the random number generator with a default value obtained from the thread's random number generator.
    ///
    ///
    /// The `new` method initializes the `Random` struct. It sets the initial state of the `mt` array
    /// using a default seed obtained from the system's RNG. This seeding process is crucial for ensuring
    /// that each instance of `Random` produces a unique and unpredictable sequence of numbers.
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new(); // Creates a new instance of Random
    /// let random_number = rng.rand(); // Generates a random number
    /// println!("Random number: {}", random_number);
    /// ```
    ///
    /// # Returns
    /// A new instance of `Random` with its internal state initialized for random number generation.
    ///
    /// # Notes
    /// - The internal state is initialized with a seed value, ensuring that each instance of `Random` produces a unique sequence of random numbers.
    /// - The `new` method ensures that the internal state is appropriately set up for the Mersenne Twister algorithm.
    pub fn new() -> Self {
        const N: usize = 624;
        let mut rng = Random {
            mt: [0; N],
            mti: N + 1,
        };
        let seed = thread_rng().gen();
        rng.mt[0] = seed;
        for i in 1..N {
            rng.mt[i] = 1812433253u32
                .wrapping_mul(rng.mt[i - 1] ^ (rng.mt[i - 1] >> 30))
                .wrapping_add(i as u32);
        }
        rng.mti = N;
        rng
    }

    /// Generates a pseudo-random number by combining multiple random number generations.
    ///
    /// This method enhances the randomness by XOR-ing multiple calls to the basic random number generator.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let pseudo_random_number = rng.pseudo(); // Generates a pseudo-random number
    /// println!("Pseudo-random number: {}", pseudo_random_number);
    /// ```
    ///
    /// # Returns
    /// A `u32` representing a pseudo-random number generated by combining multiple random number generations.
    ///
    /// # Notes
    /// - This method is intended to provide a more complex random number by aggregating multiple random number generations.
    /// - It might be useful in scenarios where a single call to the basic random number generator does not provide sufficient randomness.
    pub fn pseudo(&mut self) -> u32 {
        let mut res = self.rand();
        for _ in 0..31 {
            res ^= self.rand();
        }
        res
    }

    /// Generates a random 32-bit unsigned integer using the Mersenne Twister algorithm.
    ///
    /// This method is the core function of the `Random` struct, providing the basic mechanism for generating random numbers.
    ///
    /// The `rand` method generates a random 32-bit number using the current state of the `mt` array.
    /// It applies a series of bitwise transformations for tempering, which refines the output and improves
    /// the statistical properties of the generated numbers.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_number = rng.rand(); // Generates a random 32-bit unsigned integer
    /// println!("Random number: {}", random_number);
    /// ```
    ///
    /// # Returns
    /// A `u32` representing a randomly generated 32-bit unsigned integer.
    ///
    /// # Notes
    /// - This method updates the internal state of the random number generator each time it is called.
    /// - If the internal index (`mti`) reaches the threshold, it automatically reinitializes the internal state array.
    pub fn rand(&mut self) -> u32 {
        let config = MersenneTwisterConfig::default();
        if self.mti >= config.n {
            if self.mti == config.n + 1 + 1 {
                self.seed(5489);
            }
            self.twist();
        }

        let mut y = self.mt[self.mti];
        self.mti += 1;
        y ^= y >> 11;
        y ^= (y << 7) & config.tempering_mask_b;
        y ^= (y << 15) & config.tempering_mask_c;
        y ^= y >> 18;
        y
    }

    /// Generates a random 32-bit unsigned integer within a specified range.
    ///
    /// # Arguments
    /// * `min` - The lower bound of the range (inclusive).
    /// * `max` - The upper bound of the range (exclusive).
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_number = rng.random_range(10, 20); // Generates a random number between 10 (inclusive) and 20 (exclusive)
    /// println!("Random number between 10 and 20: {}", random_number);
    /// ```
    ///
    /// # Returns
    /// A `u32` representing a randomly generated number within the specified range.
    ///
    /// # Panics
    /// Panics if `min` is not less than `max`.
    ///
    /// # Notes
    /// - This method offers a convenient way to specify the range for random number generation.
    pub fn random_range(&mut self, min: u32, max: u32) -> u32 {
        assert!(
            max > min,
            "max must be greater than min for random_range"
        );
        let mut rng = rand::thread_rng(); // Get a thread-local RNG
        rng.gen_range(min..max) // Use the gen_range method for uniform distribution
    }

    /// Generates a random number within a specified range of integer values.
    ///
    /// # Arguments
    /// * `min` - The lower bound of the range (inclusive).
    /// * `max` - The upper bound of the range (inclusive).
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_number = rng.range(1, 100); // Generates a random number between 1 and 100
    /// println!("Random number between 1 and 100: {}", random_number);
    /// ```
    ///
    /// # Returns
    /// An `i32` representing a randomly generated number within the specified range.
    ///
    /// # Panics
    /// Panics if `min` is greater than `max`.
    ///
    /// # Notes
    /// - This method is similar to `int` but allows for a different interface for specifying the range.
    pub fn range(&mut self, min: i32, max: i32) -> i32 {
        thread_rng().gen_range(min..=max)
    }

    /// Seeds the random number generator with a specified value.
    ///
    /// This method initializes the internal state array of the generator with a given seed, affecting the sequence of random numbers generated.
    ///
    /// The constant 1812433253u32 is used in the seeding process. It's derived from the fractional part
    /// of the square root of 2. This particular value is chosen to provide good statistical properties
    /// for the initial array of numbers.
    ///
    /// # Arguments
    /// * `seed` - A `u32` value used to seed the generator.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// rng.seed(12345); // Seeds the random number generator
    /// let random_number = rng.rand(); // Generates a random number based on the new seed
    /// println!("Random number with seed 12345: {}", random_number);
    /// ```
    ///
    /// # Notes
    /// - Seeding the generator is essential for reproducibility of the random number sequence.
    /// - Different seeds will produce different sequences, while the same seed will always produce the same sequence.
    pub fn seed(&mut self, seed: u32) {
        const N: usize = 624;
        self.mt[0] = seed;
        for i in 1..N {
            self.mt[i] = 1812433253u32
                .checked_mul(self.mt[i - 1] ^ (self.mt[i - 1] >> 30))
                .map_or(u32::MAX, |val| val + i as u32);
        }
        self.mti = N;
    }

    /// Performs the "twisting" operation to update the internal state array of the random number generator.
    ///
    /// This method is a key part of the Mersenne Twister algorithm, and it's called internally when the generator's index exceeds its predefined threshold.
    ///
    /// The `twist` method is a key part of the Mersenne Twister algorithm. It generates a new array of
    /// 624 numbers based on the current array. This method uses bitwise operations and modular arithmetic
    /// to transform the existing numbers into a new set, thereby 'twisting' the current state. This is
    /// essential for maintaining the algorithm's long period and high-quality randomness.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// rng.twist(); // Manually performs a twist operation
    /// ```
    ///
    /// # Notes
    /// - This method modifies the internal state array, ensuring that future random numbers generated are different from the previous ones.
    /// - It is typically not called directly by users of the `Random` struct, as it is automatically managed by the `rand` and other methods.
    pub fn twist(&mut self) {
        let config = MersenneTwisterConfig::default();
        for i in 0..config.n {
            let x = (self.mt[i] & config.upper_mask)
                + (self.mt[(i + 1) % config.n] & config.lower_mask);
            let x_a = x >> 1;
            if x % 2 != 0 {
                self.mt[i] = self.mt[(i + config.m) % config.n]
                    ^ x_a
                    ^ config.matrix_a;
            } else {
                self.mt[i] = self.mt[(i + config.m) % config.n] ^ x_a;
            }
        }
        self.mti = 0;
    }

    /// Generates a random 64-bit signed integer.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_i64 = rng.i64();
    /// println!("Random i64: {}", random_i64);
    /// ```
    ///
    /// # Returns
    /// An `i64` representing a randomly generated 64-bit signed integer.
    pub fn i64(&mut self) -> i64 {
        let high = self.rand() as i64;
        let low = self.rand() as i64;
        (high << 32) | low
    }

    /// Generates a random 64-bit unsigned integer.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_u64 = rng.u64();
    /// println!("Random u64: {}", random_u64);
    /// ```
    ///
    /// # Returns
    /// A `u64` representing a randomly generated 64-bit unsigned integer.
    pub fn u64(&mut self) -> u64 {
        let high = self.rand() as u64;
        let low = self.rand() as u64;
        (high << 32) | low
    }

    /// Generates a random 64-bit floating-point number in the range [0.0, 1.0).
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_f64 = rng.f64();
    /// println!("Random f64: {}", random_f64);
    /// ```
    ///
    /// # Returns
    /// An `f64` representing a randomly generated 64-bit floating-point number.
    pub fn f64(&mut self) -> f64 {
        thread_rng().gen::<f64>()
    }

    /// Generates a random string of the specified length.
    ///
    /// # Arguments
    /// * `length` - The desired length of the random string.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let random_string = rng.string(10);
    /// println!("Random string: {}", random_string);
    /// ```
    ///
    /// # Returns
    /// A `String` representing a randomly generated string of the specified length.
    pub fn string(&mut self, length: usize) -> String {
        let chars: Vec<char> = (0..length)
            .map(|_| {
                let value = self.rand() % 62;
                if value < 10 {
                    (b'0' + value as u8) as char
                } else if value < 36 {
                    (b'a' + value as u8 - 10) as char
                } else {
                    (b'A' + value as u8 - 36) as char
                }
            })
            .collect();
        chars.into_iter().collect()
    }

    /// Generates a random number from a standard normal distribution (mean = 0, stddev = 1).
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let mu = 0.0; // Mean of the standard normal distribution
    /// let sigma = 1.0; // Standard deviation of the standard normal distribution
    /// let normal = rng.normal(mu, sigma);
    /// println!("Random number from standard normal distribution: {}", normal);
    /// ```
    ///
    /// # Returns
    /// An `f64` representing a random number from a standard normal distribution.
    pub fn normal(&mut self, mu: f64, sigma: f64) -> f64 {
        let u1 = self.f64();
        let u2 = self.f64();
        println!("u1: {}", u1);
        println!("u2: {}", u2);
        let z0 = (-2.0 * u1.ln()).sqrt()
            * (2.0 * std::f64::consts::PI * u2).cos();
        mu + sigma * z0
    }

    /// Generates a random number from an exponential distribution with the specified rate parameter.
    ///
    /// # Arguments
    /// * `rate` - The rate parameter (lambda) of the exponential distribution.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let exponential = rng.exponential(1.5);
    /// println!("Random number from exponential distribution with rate 1.5: {}", exponential);
    /// ```
    ///
    /// # Returns
    /// An `f64` representing a random number from an exponential distribution.
    pub fn exponential(&mut self, rate: f64) -> f64 {
        // Implementation of the inverse CDF method
        -1.0 / rate * (1.0 - self.f64()).ln()
    }

    /// Generates a random number from a Poisson distribution with the specified mean parameter.
    ///
    /// # Arguments
    /// * `mean` - The mean parameter (lambda) of the Poisson distribution.
    ///
    /// # Examples
    /// ```
    /// use vrd::random::Random;
    /// let mut rng = Random::new();
    /// let poisson = rng.poisson(3.0);
    /// println!("Random number from Poisson distribution with mean 3.0: {}", poisson);
    /// ```
    ///
    /// # Returns
    /// An `u64` representing a random number from a Poisson distribution.
    pub fn poisson(&mut self, mean: f64) -> u64 {
        let mut k = 0;
        let mut p = 1.0;
        let l = (-mean).exp();
        loop {
            k += 1;
            p *= self.f64();
            if p < l {
                break;
            }
        }
        k - 1
    }
}

impl std::fmt::Display for Random {
    /// Returns a formatted string representation of the `Random` struct.
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "Random {{ mt: {:?}, mti: {:?} }}", self.mt, self.mti)
    }
}

impl Default for Random {
    /// Returns a default random number generator
    fn default() -> Self {
        Self::new()
    }
}